

C H A P T E R F I V E

P R O G R A M M I N G

Manual

 2

Table of Contents

C H A P T E R F I V E ... 1

1. Introduction to Corona SDK: Easy Cross-Platform Development 3

Introduction.. 3
Supported platforms.. 4
Development with Lua... 4
Lua Editors .. 6
Creating your first program ... 6
Simulator ... 7

2. Corona SDK: Creating an Analog Clock App 9

Select Target Device... 9
Interface .. 10
Code.. 10

3. Accelerometer Application Overview.............. ..13

Select Target Device... 13
Interface .. 14
Code.. 14

4. Develop an Entertaining Magic Ball Application15

Select Target Device... 16
Interface .. 16
Code.. 17

4. Working with Alerts............................. ...19

Select Target Device... 19
Interface .. 20
Code.. 20

5. Creating a Simple Basketball Game With Corona... ...23

Step 1: Setting Up the Physics Engine ... 23
Step 2: Creating the Arena.. 24
Step 3: Adding a Ball and a Goal .. 25
Step 4: Creating Drag Support for the Ball ... 26
Step 5: Creating the Hoop and Scoring Mechanism... 27
Conclusion... 28
Basketball Game - Full Code .. 28

 3

1. INTRODUCTION TO CORONA SDK: EASY CROSS-PLATFORM DEVELOPMENT

Introduction

Corona SDK is an excellent option for any kind of mobile developer from beginner to advanced. This
tutorial will introduce you to this easy-to-use cross-platform framework and show you how to start
creating content for your preferred platform.

Figure 1: Offial Corona Website

The official Corona website describes the SDK as follows:

“Corona is a fast and easy development tool for iPhone, iPad and Android games and applications.

Corona-powered apps run at 30 fps in as little as 300k, and the graphics and animation engine fully
leverages OpenGL hardware acceleration.

The Corona SDK is the first in Ansca’s Corona family of products for creating high-performance
multimedia graphically rich applications and games for the iPhone. With Corona, you can quickly
create iPhone applications in a matter of hours. No Objective-C/Cocoa required, and no C++

Ansca is the company behind Corona, and this SDK allows developers to create fast and powerful
cross-platform applications that have access to API’s other frameworks don’t, like the camera, GPS
and Accelerometer.

Corona SDK offers plenty of features that make it a very reliable way to create applications. Some of
these features are:

• Native Application Development : Corona executable binaries are 100% Objective-C/C++ ,
so you won’t have to worry about Apple iOS 5 new rules on using outside development tools.
In fact, Corona needs Xcode to compile.

 4

• Automatic OpenGL-ES Integration : No need to call extensive classes or functions to create
simple screen manipulations.

• Cross-Platform Development : Corona can create apps for iOS (iPhone, iPod Touch, iPad)
and Android devices.

• Performance : Corona is optimized to make use of hardware-accelerated features, resulting in
powerful performance in games and apps.

• Device Features : Access device native controls and hardware, like camera, accelerometer,
gps, etc.

• Easy to Learn : Corona uses the Lua programming language , which is powerful and easy to
learn.

Supported platforms

The largest advantage of Corona is that it allow you to work with one code base and produce products
for many different devices.

Specifically, the Corona SDK will allow you to create apps for all iOS devices and Android devices.

Development with Lua

Figure 2: The Lua Programming Language

Corona uses the Lua programming language to create applications. Lua is a scriptitng language
commonly used to develop games. It has a good amount of market adoption in the development
community. Lua syntax can be compared to languages such as JavaScript or ActionScript 3 , which
makes it easy to learn.

Currently, many programming languages are concerned with how to help you write programs with
hundreds of thousands of lines. For that, they offer you packages, namespaces, complex type
systems, a myriad of constructions, and thousands of documentation pages to be studied.

 5

Lua does not try to help you write programs with hundreds of thousands of lines. Instead, Lua tries to
help you solve your problem with only hundreds of lines, or even less. To achieve this aim, Lua relies
on extensibility, like many other languages. Unlike most other languages, however, Lua is easily
extended not only with software written in Lua itself, but also with software written in other languages,
such as C and C++.

Lua was designed, from the beginning, to be integrated with software written in C and other
conventional languages. This duality of languages brings many benefits. Lua is a tiny and simple
language, partly because it does not try to do what C is already good for, such as sheer performance,
low-level operations, or interface with third-party software. Lua relies on C for those tasks. What Lua
does offer is what C is not good for: a good distance from the hardware, dynamic structures, no
redundancies, ease of testing and debugging. For that, Lua has a safe environment, automatic
memory management, and great facility to handle strings and other kinds of data with dynamic size.

More than being an extensible language, Lua is also a glue language. Lua supports a component-
based approach to software development, where we create an application by gluing together existing
high-level components. Usually, these components are written in a compiled, statically typed
language, such as C or C++; Lua is the glue that we use to compose and connect those components.
Usually, the components (or objects) represent more concrete, low-level concepts (such as widgets
and data structures) that are not subject to many changes during program development and that take
the bulk of the CPU time of the final program. Lua gives the final shape of the application, which will
probably change a lot during the life cycle of the product. However, unlike other glue technologies, Lua
is a full-fledged language as well. Therefore, we can use Lua not only to glue components, but also to
adapt and reshape them, or even to create whole new components.

Of course, Lua is not the only scripting language around. There are other languages that you can use
for more or less the same purposes, such as Perl , Tcl , Ruby , Forth , and Python . The following
features set Lua apart from these languages; although other languages share some of these features
with Lua, no other language offers a similar profile:

Extensibility : Lua's extensibility is so remarkable that many people regard Lua not as a language, but
as a kit for building domain-specific languages. Lua has been designed from scratch to be extended,
both through Lua code and through external C code. As a proof of concept, it implements most of its
own basic functionality through external libraries. It is really easy to interface Lua with C/C++ and other
languages, such as Fortran , Java , Smalltalk , Ada , and even with other scripting languages.

• Simplicity : Lua is a simple and small language. It has few (but powerful) concepts. This
simplicity makes Lua easy to learn and contributes for a small implementation. Its complete
distribution (source code, manual, plus binaries for some platforms) fits comfortably in a floppy
disk.

• Efficiency : Lua has a quite efficient implementation. Independent benchmarks show Lua as
one of the fastest languages in the realm of scripting (interpreted) languages.

Portability : When we talk about portability, we are not talking about running Lua both on Windows
and on Unix platforms. We are talking about running Lua on all platforms we have ever heard about:
NextStep , OS/2, PlayStation II (Sony) , Mac OS-9 and OS X, BeOS, MS-DOS, IBM mainframes ,
EPOC, PalmOS , RISC OS, plus of course all flavors of Unix and Windows. The source code for each
of these platforms is virtually the same. Lua does not use conditional compilation to adapt its code to
different machines; instead, it sticks to the standard ANSI (ISO) C. That way, usually you do not need
to adapt it to a new environment: If you have an ANSI C compiler, you just have to compile Lua, out of
the box.

A great part of the power of Lua comes from its libraries. This is not by chance. One of the main
strengths of Lua is its extensibility through new types and functions. Many features contribute to this
strength. Dynamic typing allows a great degree of polymorphism. Automatic memory management
simplifies interfaces, because there is no need to decide who is responsible for allocating and
deallocating memory, or how to handle overflows. Higher-order functions and anonymous functions
allow a high degree of parametrization, making functions more versatile.

 6

Lua comes with a small set of standard libraries. When installing Lua in a strongly limited environment,
such as embedded processors, it may be wise to choose carefully which libraries you need. Moreover,
if the limitations are hard, it is easy to go inside the libraries' source code and choose one by one
which functions should be kept. Remember, however, that Lua is rather small (even with all standard
libraries) and in most systems you can use the whole package without any concerns.

Lua Editors

At this time, Corona doesn’t come with an exclusive Lua editor, but there are some great editors
already available that you can use:

Free:

• Eclipse , using the Lua Eclipse plugin.

• LuaEdit , LuaEdit is an IDE/Debugger/Script Editor designed for the version 5.1 of Lua.

• NotePad++ , a free source code editor which supports several programming languages,
including Lua.

• TextWrangler , a powerful general purpose text editor and Unix and server administrator’s
tool.

Commercial :

• TextMate , Available for Mac OS X only.

• BBedit , a leading professional HTML and text editor for the Macintosh.

• Decoda , a professional development environment for debugging Lua scripts in your
applications.

Creating your first program

To get started with Corona, let’s begin with the classic Hello World application.

Open your prefered Lua editor and write the following code: print("Hello World!").

Create a new Project folder named HelloWorld and save the file as main.lua. We’ll launch this app in
the next steps.

 7

Figure 3: Corona Terminal

This will also open the Corona Simulator displaying an iPhone graphic with no content, this is because
the print function only outputs to the Terminal, to see how to display text in the simulator continue to
the next step.

Simulator

To access the simulator or actual device screen, we’ll need to make use of the Corona specific API’s

In your main.lua file write the following and then run the program again:

local myTextField = display.newText("Hello World!", 1, 20, nil,
14);myTextField:setTextColor(255, 255, 255);

 8

Figure 4: Corona Simulator

 9

2. CORONA SDK: CREATING AN ANALOG CLOCK APP

Using the Corona API’s, we’ll create a basic analog clock. The graphics will be PNG’s exported from
the image editor of your choice and then powered by Lua. You will also learn how to test your
application using the simulator and build your app for device testing.

Select Target Device

The first thing you have to do is select the platform you want to run your app, this way you’ll be able to
choose the size for the images you will use.

The iOS platform has these characteristics:

• iPad : 1024x768px, 132 ppi

• iPhone/iPodTouch : 320x480px, 163 ppi

• iPhone 4 : 960x640px, 326 ppi

For Android it is a little different, being an open platform, you may encounter many different screen
resolutions:

• Nexus One : 480x800px, 254 ppi

• Droid : 854x480px, 265 ppi

• HTC Legend : 320x480px, 180 ppi

 10

Interface

Figure 5: Clock Interface

Code

Background

The first thing we’ll do is to add the clock background:

local background = display.newImage("background.png ")

 11

This line creates the local variable background and uses the display API to add the specified image to
the stage. By default, the image is added to 0,0.

Display Clock Hands

We repeat the process with the clock hands and the clock center images, placing them in the center of
the stage:

local hourHand = display.newImage("hourHand.png", 1 52, 185)

local minuteHand = display.newImage("minuteHand.png ", 152, 158)

local center = display.newImage("center.png", 150, 230)

local secondHand = display.newImage("secondHand.png ", 160, 155)

Reference Point

To position the images correctly, we modify the reference point in order to move images relatively to
the bottom center:

hourHand:setReferencePoint(display.BottomCenterRefe rencePoint)

minuteHand:setReferencePoint(display.BottomCenterRe ferencePoint)

secondHand:setReferencePoint(display.BottomCenterRe ferencePoint)

Initial Position

Here we set the initial position of the clock hands. This time we set the rotation according to the
system time:

local timeTable = os.date("*t")

hourHand.rotation = timeTable.hour * 30 + (timeTabl e.min * 0.5)

minuteHand.rotation = timeTable.min * 6

secondHand.rotation = timeTable.sec * 6

Memory Practices

The timeTable variable will be used just once at the application launch, so there’s no need to keep it in
memory. To release the memory used by the variable (which is almost nothing, but you MUST get
used to deallocate unused vars or objects) we set its value to nil, this way garbage collection takes
care of it:

timeTable = nil

MoveHands Function

The next lines of code handle the clock hands rotation, it is the same code as before, only this time
wrapped into a function that will be executed every second by a Timer:

 12

local function moveHands(e)

 local timeTable = os.date("*t")

 hourHand.rotation = timeTable.hour * 30 + (timeTab le.min * 0.5)

 minuteHand.rotation = timeTable.min * 6

 secondHand.rotation = timeTable.sec * 6

end

Timer

The Timer, it executes every second and performs the specified function, this is the moveHands
function we created in the last step. The times it’s executed are set by the third parameter, 0 is infinity.

Figure 6: Corona Simulator analogue Clock

 13

3. ACCELEROMETER APPLICATION OVERVIEW

Using the Corona API’s , we’ll create a basic application that registers the device movement based on
the accelerometer value, moving an object on the screen.

Select Target Device

The first thing you have to do is select the platform you want to run your app, this way you’ll be able to
choose the size for the images you will use.

The iOS platform has these characteristics:

• iPad : 1024x768px, 132 ppi

• iPhone/iPodTouch : 320x480px, 163 ppi

• iPhone 4 : 960x640px, 326 ppi

For Android it is a little different, being an open platform, you may encounter many different screen
resolutions:

• Nexus One : 480x800px, 254 ppi

• Droid : 854x480px, 265 ppi

• HTC Legend : 320x480px, 180 ppi

 14

Interface

Figure 7: Accelerometer

This is the graphic interface we’ll be using, it includes a triangle graphic that will serve as the position
meter.

Code

Hide Status Bar

First, we hide the status bar, this is the bar on top of the screen that shows the time, signal, and other
indicators

display.setStatusBar(display.HiddenStatusBar)

Background

Now we add the app background.

local background = display.newImage("background.png ")

This line creates the local variable background and uses the display API to add the specified image to
the stage. By default, the image is added to 0,0 using the top left corner as the reference point.

 15

Indicator

We repeat the process with the position indicator image, placing it in the center of the stage.

local indicator = display.newImage("indicator.png")

indicator:setReferencePoint(display.CenterReference Point)

indicator.x = display.contentWidth * 0.5

indicator.y = display.contentWidth * 0.5 + 100

Needed Variables

The next variables will be used to handle the accelerometer event.

• acc : A Table that will be used as a function listener for the accelerometer event.

• centerX : Stores the horizontal center value of the stage.

local acc = {}

local centerX = display.contentWidth * 0.5

Accelerometer Function

This function uses the acc table to create a listener for the accelerometer event, the xGravity property
(part of the accelerometer event) and the centerX variable moves the position indicator according to
the calculated position.

function acc:accelerometer(e)

 indicator.x = centerX + (centerX * e.xGravity)

end

This will make our indicator to balance when the device inclination changes, the xGravity property will
handle the side movements, you can use the yGravity property to handle up/down inclination types.

Accelerometer Listener

The Accelerometer events are runtime based, so we use the Runtime keyword to add the listener.

Runtime:addEventListener("accelerometer", acc)

4. DEVELOP AN ENTERTAINING MAGIC BALL APPLICATION

Using the Shake Event built in the Corona API , we’ll create an application that generates a random
result from predefined words.You’ll also learn to create simple animations using the transition
methods.

 16

Select Target Device

The first thing you have to do is select the platform you want to run your app, this way you’ll be able to
choose the size for the images you will use.

The iOS platform has these characteristics:

• iPad : 1024x768px, 132 ppi

• iPhone/iPodTouch : 320x480px, 163 ppi

• iPhone 4 : 960x640px, 326 ppi

For Android it is a little different, being an open platform, you may encounter many different screen
resolutions:

• Nexus One : 480x800px, 254 ppi

• Droid : 854x480px, 265 ppi

• HTC Legend : 320x480px, 180 ppi

Interface

Figure 8: Magic Ball

 17

This is the graphic interface we’ll be using, it includes a triangle graphic that will serve as the
Octohedron found in Magic Balls.

Code

First, we hide the status bar, this is the bar on top of the screen that shows the time, signal and other
indicators.

display.setStatusBar(display.HiddenStatusBar)

Background

Now we add the app background.

local background = display.newImage("background.png ")

This line creates the local variable background and uses the display API to add the specified image to
the stage. By default, the image is added to 0,0 using the top left corner as the reference point.

Octohedron

We repeat the process with the octohedron image, placing it in the center of the stage.

local octohedron = display.newImage("octohedron.png ", 110, 186)

octohedron.isVisible = false

The Octothedron will be invisible by default, and will appear at the first device shake.

TextField

The following code creates the center TextField that will display the random sentence when a shake
event is dispatched.

local textfield = display.newText("", 0, 0, native. systemFontBold, 14)

textfield:setReferencePoint(display.CenterReference Point)

textfield.x = display.contentWidth * 0.5

textfield.y = display.contentHeight * 0.5

textfield:setTextColor(255, 255, 255)

Necesary Variables

The next variables will be used to handle the Shake event.

• shake : A Table that will be used as a function listener for the shake event.

• options : Stores the words that can be shown by the magic ball.

local shake = {}

 18

local options = {"Probably Not", "No.", "Nope", "Ma ybe", "Yes", "Probably", "It's
Done", "Of Course"}

Shake Function

This function listens for a shake event and reveals the octohedron and text if true.

function shake:accelerometer(e)

 if(e.isShake == true) then

 octohedron.isVisible = true

 transition.from(octohedron, {alpha = 0}) -- Show octohedron

 textfield.text = options[math.random(1, 8)]

 transition.from(textfield, {alpha = 0})

 end

end

Accelerometer Listener

The Accelerometer events are runtime based, so we use the Runtime keyword to add the listener.

Runtime:addEventListener("accelerometer", shake)

 19

Figure 9: Magic Ball - Final Result

4. WORKING WITH ALERTS

Alerts are a predefined system method to show information to the user, they are commonly used to
display short messages and can include one or multiple options to determine a posterior action.

Select Target Device

The first thing you have to do is select the platform you want to run your app, this way you’ll be able to
choose the size for the images you will use.

The iOS platform has these characteristics:

• iPad : 1024x768px, 132 ppi

• iPhone/iPodTouch : 320x480px, 163 ppi

• iPhone 4 : 960x640px, 326 ppi

 20

For Android it is a little different, being an open platform, you may encounter many different screen
resolutions:

• Nexus One : 480x800px, 254 ppi

• Droid : 854x480px, 265 ppi

• HTC Legend : 320x480px, 180 ppi

Interface

Code

Hide Status Bar

First, we hide the status bar, this is the bar on top of the screen that shows the time, signal and other
indicators.

display.setStatusBar(display.HiddenStatusBar)

 21

Background

This line creates the local variable background and uses the display API to add the specified image to
the stage. By default, the image is added to 0,0 using the top left corner as the reference point.

local background = display.newImage("background.png ")

Alert Button

Repeat the process with the button image, placing it in the center of the stage. The button function will
be created later in the code.

local alertButton = display.newImage("alertButton.p ng")

alertButton:setReferencePoint(display.CenterReferen cePoint)

alertButton.x = 160

alertButton.y = 240

Lister for Alert Clicks

When the user clicks on any of the option buttons in the Alert a clicked event is displatched, we need
to check for the index of the clicked button in order to know which option was selected. An alert lets
you include up to 6 buttons, its index is defined by the order it was written in the alert call.

local function onClick(e)

 if e.action == "clicked" then

 if e.index == 1 then

 -- //Some Action

 elseif e.index == 2 then

 system.openURL("http://www.ebusiness-lab.gr")

 end

 end

end

Display Alert

This function will be executed when the alert button is pressed, it uses the native.showAlert() method
to display the alert. The alert will be linked to a variable that will serve as the alert ID, this way it can be
located, reused or removed by the native.cancelAlert() method.

function alertButton:tap(e)

 local alert = native.showAlert("TEI Messolonghi", "Mobile Development at TEI
Mesolonghi", {"OK", "Learn More"}, onClick)

end

This method has four paremeters, lets take a look at them:

native.showAlert(title , message , {buttons }, listener)

 22

• title : The text on top of the alert.

• message : The body of the alert.

• buttons : A table containing the buttons that will be displayed by the alert, you can display up
to 6 buttons.

• listener : A function that will listen to the alert button’s click events.

Alert Button Listener

The button now has a function to run when pressed, but this function alone will not be able to react
without a listener.

The next line of code sets that listener:

alertButton:addEventListener("tap", alertButton)

Figure 10: Alert message – Simulation

 23

5. CREATING A SIMPLE BASKETBALL GAME WITH CORONA

The physics engine that comes with Corona Game Edition is an incredibly powerful and easy to use
tool. In this tutorial, we will cover the completion of a rudimentary basketball game using this exciting
technology.

Figure 11: The final project, running on the iPhone simulator

Step 1: Setting Up the Physics Engine

1. display.setStatusBar(display.HiddenStatusBar)
2.
3. local physics = require "physics"
4. physics.start()
5. physics.setGravity(9.81, 0) -- 9.81 m/s*s in the positive x direction
6. physics.setScale(80) -- 80 pixels per meter
7. physics.setDrawMode("normal")

The first thing we do (as in many programs) is get rid of the status bar at the top of the screen. Next,
we make the necessary require statement for using physics and store the result in the aptly named
“physics” variable. Things become more interesting in the next few lines. In line five, we set the
gravitational acceleration. Typically, gravity is set to 9.8 m/s*s in the positive y-direction, but in this
instance we want to make gravity pull in the positive x-direction because the application will have a
landscape orientation. Furthermore, we set the scale to 80 pixels per meter. This number can vary
quite a bit based on the size of the objects in your application, and you may have to play around with it
to give your game the correct feel. I chose 80 px/m because I want to fit about 15 feet of vertical space
on the screen. Knowing that, it’s just a simple matter of unit conversion to get a value.

Note: It’s important to try and tie everything to r eal world objects in applications with physics.
The more real life measurements you use, the less g uesswork there will be and the more
realistic your application will seem.

We round out these few lines by setting the draw mode to normal. This line makes it easier to change
to debug mode later if we should have to fix some unintended behavior with collisions. Setting this to
normal is the default behavior and draws the shapes as the user will see them in the final game.

 24

Figure 12: The final project viewed in "debug" mode

Step 2: Creating the Arena

1. local background = display.newRect(0,0,display.cont entWidth,display.contentHe
ight)

2. local score = display.newText("Score: 0", 50, 300)
3. score:setTextColor(0, 0, 0)
4. score.rotation = -90
5. score.size = 36
6. local floor = display.newRect(320, 0, 1, 480)
7. local lWall = display.newRect(0, 480, 320, 1)
8. local rWall = display.newRect(0, -1, 320, 1)
9. local ceiling = display.newRect(-1, 0, 1, 480)
10.
11. staticMaterial = {density=2, friction=.3, bounce=.4 }
12. physics.addBody(floor, "static", staticMaterial)
13. physics.addBody(lWall, "static", staticMaterial)
14. physics.addBody(rWall, "static", staticMaterial)
15. physics.addBody(ceiling, "static", staticMaterial)

This block establishes the boundaries of the arena, and the properties of all the static objects in the
application. We begin by adding a simple (white by default) rectangle to the background. Inside of the
white rectangle in the background image, we position some text to display the current score. Because
the application will be displayed in landscape mode, we also make necessary rotation adjustments
here. The arena needs to trap the ball within the visible portion of the screen. We achieve this with four
static rectangles (floor, lWall, rWall, ceiling) placed just out of view.

Next, we bring physics back into the equation. Instead of retyping the table for the physical properties
of each object, we create a table name staticMaterial to be reused for each of the walls and the goal
itself. I’ve chosen fairly standard values for these properties, though I encourage you to play around
with them. There is one more step we must take, and that is to tell Corona that these objects should
participate in physics calculations. We do this by calling the addBody function of the physics object.
This function takes three arguments:

1. The object
2. An optional modifier
3. A table of physical properties

 25

We’ve already determined the properties and the objects, so all that remains is the optional modifier.
We use “static” to prevent gravity, or any force for that matter, from displacing our walls!

Figure 13: The white background, the score table & invisible walls

Step 3: Adding a Ball and a Goal

1. -- Create the goal
2. local vertPost = display.newRect(110, 5, 210, 10)
3. vertPost:setFillColor(33, 33, 33)
4. local horizPost = display.newRect(110, 10, 10, 40)
5. horizPost:setFillColor(33, 33, 33)
6. local backboard = display.newRect(55, 50, 85, 5)
7. backboard:setFillColor(33, 33, 33)
8.
9. physics.addBody(vertPost, "static", staticMaterial)
10. physics.addBody(horizPost, "static", staticMaterial)
11. physics.addBody(backboard, "static", staticMaterial)
12.
13. --Create the Ball
14. local ball = display.newCircle(50, 200, 10)
15. ball:setFillColor(192, 99, 55)
16.
17. physics.addBody(ball, {density=.8, friction=.3, bou nce=.6, radius=10})

In one fell swoop, we create the rest of the visual elements of our app. This should all look very
familiar. There are just two things that I would like to point out. First, some of the values for the
positioning of the goal may seem off. This is to account for the landscape orientation. The goal will
appear upright when the device is rotated on its side. Also, be sure to include the radius property in
the properties table of the ball so it will behave correctly.

 26

Figure 14: After adding a ball and a goal

Step 4: Creating Drag Support for the Ball

1. local function drag(event) -- create a function to execute when the ball
is touched

2. local myball = event.target -- event.target is "who" is capturing the
event

3.
4. local phase = event.phase -- event.phase describes the touch sequence:

"began", "moved", "canceled", etc...
5. if "began" == phase then
6. display.getCurrentStage():setFocus(myball) -- by setting focus to

the ball we instruct the system to deliver all futu re hit events to the same
object, so that we can drag the ball around (the "m oved" phase, below)

7.
8. -- store initial position: we store the horizontal & vertical

difference between the ball and the touch positions , so that we can drag the
ball from anywhere on it's surface

9. myball.x0 = event.x - myball.x
10. myball.y0 = event.y - myball.y
11.
12. -- avoid gravitational forces
13. event.target.bodyType = "kinematic"
14.
15. -- stop current motion, if any
16. event.target:setLinearVelocity(0, 0)
17. event.target.angularVelocity = 0
18.
19. else
20. if "moved" == phase then
21. myball.x = event.x - myball.x0
22. myball.y = event.y - myball.y0
23. elseif "ended" == phase or "cancelled" == p hase then
24. display.getCurrentStage():setFocus(nil) -- clear focus, user

can touch any other objects after this
25. event.target.bodyType = "dynamic" -- re-enable gravity
26. end
27. end

 27

28.
29. return true -- when an event handler returns true, no other han dlers get

executed after this one
30. end
31. myball:addEventListener("touch", drag) -- make ball listen to the touch event

and reply with the drag function

This function gives us very basic drag support. Some of the high points include setting the bodyType
of the ball to kinematic so gravity won’t pull the ball out of the user’s hands (Note: be sure to set this
back to dynamic after the touch has ended). The lines just after that are equally important. There
we stop all of the ball’s motion when it is touched to avoid the same problem we had with gravity.

If you run the app as it is now, you will probably notice that the ball loses all of its momentum as soon
as you stop touching it. To remedy this, we need to create a function to track the speed of the ball, and
then set the speed of the ball appropriately after the touch ends.

1. local speedX = 0
2. local speedY = 0
3. local prevTime = 0
4. local prevX = 0
5. local prevY = 0
6.
7. function trackVelocity(event)
8. local timePassed = event.time - prevTime -- time is given in msec
9. prevTime = prevTime + timePassed
10.
11. speedX = (myball.x - prevX)/(timePassed/1000) -- velocity is counted at

pixels/sec
12. speedY = (myball.y - prevY)/(timePassed/1000)
13.
14. prevX = myball.x
15. prevY = myball.y
16. end
17.
18. Runtime:addEventListener("enterFrame", trackVelocit y) -- trackVelocity gets

executed everytime the screen is redrawn

We create trackVelocity as a listener of the enterFrame event, so it is called everytime the screen is
redrawn. What it does is find the change in speed over the change in time to find the velocity of the
ball in pixels per second. There’s really not much to it. Add the following line to the drag function to
properly set the linear velocity of the ball.

1. myball:setLinearVelocity(speedX, speedY) -- when myball is released it gets
the computed velocity

Step 5: Creating the Hoop and Scoring Mechanism

We begin with some more visual work, but by now you should be a pro at rectangles, so it should be
painless. The following code creates the rim. Notice that the middle portion of the rim is not going to be
part of the physical system because we want the ball to pass through freely.

1. local rimBack = display.newRect(110, 55, 5, 7)
2. rimBack:setFillColor(207, 67, 4)
3. local rimFront = display.newRect(110, 92, 5, 3)
4. rimFront:setFillColor(207, 67, 4)
5. local rimMiddle = display.newRect(110, 62, 5, 30)
6. rimMiddle:setFillColor(207, 67, 4)
7.
8. physics.addBody(rimBack, "static", staticMaterial)
9. physics.addBody(rimFront, "static", staticMaterial) -- both the back and

front of the rim should have a static body

Next we need a way to know when the ball has passed through the goal. The easiest way to
accomplish this is by designating a small patch of the screen near the rim as a “score zone”.

 28

Whenever the ball is in this zone we can increment the score. To prevent the score from miscounting
when the ball lingers around the rim, we keep track of the time of the last goal, and ensure that there is
adequate separation between each successive goal. A one second delay should work nicely.

1. scoreCtr = 0
2. local lastGoalTime = 1000
3.
4. function monitorScore(event)
5. if event.time - lastGoalTime > 1000 then -- allow execution only after

1 second
6. if ball.x > 103 and ball.x < 117 and ball.y > 62 and ball.y < 92 then

7. scoreCtr = scoreCtr + 1
8. print(score.text)
9. lastGoalTime = event.time
10. score.text = "Score: " .. scoreCtr
11. end
12. end
13. end

14. Runtime:addEventListener("enterFrame", monitorScore) -- scori ng is monitored

everytime the screen is redrawn

Conclusion

Corona takes care of the more difficult physics tasks, leaving you with more time to focus on the
content and gameplay of your game.

(Reference: Carter Grove, November 2010, mobile tuts+
http://mobile.tutsplus.com/tutorials/corona/corona-sdk_game-development_basketball)

Basketball Game - Full Code

Included external file (main.lua)

